1,203 research outputs found

    Hydrodynamic Flows on Curved Surfaces: Spectral Numerical Methods for Radial Manifold Shapes

    Full text link
    We formulate hydrodynamic equations and spectrally accurate numerical methods for investigating the role of geometry in flows within two-dimensional fluid interfaces. To achieve numerical approximations having high precision and level of symmetry for radial manifold shapes, we develop spectral Galerkin methods based on hyperinterpolation with Lebedev quadratures for L2L^2-projection to spherical harmonics. We demonstrate our methods by investigating hydrodynamic responses as the surface geometry is varied. Relative to the case of a sphere, we find significant changes can occur in the observed hydrodynamic flow responses as exhibited by quantitative and topological transitions in the structure of the flow. We present numerical results based on the Rayleigh-Dissipation principle to gain further insights into these flow responses. We investigate the roles played by the geometry especially concerning the positive and negative Gaussian curvature of the interface. We provide general approaches for taking geometric effects into account for investigations of hydrodynamic phenomena within curved fluid interfaces.Comment: 14 figure

    Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

    Full text link
    We develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative d\mathbf{d}, Hodge star ⋆\star, and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform convergence studies of our numerical exterior derivative operator d‾\overline{\mathbf{d}} and Hodge star operator ⋆‾\overline{\star} showing each converge spectrally to d\mathbf{d} and ⋆\star. We show how the numerical operators can be naturally composed to formulate general numerical approximations for solving differential equations on manifolds. We present results for the Laplace-Beltrami equations demonstrating our approach.Comment: 22 pages, 13 figure

    GMLS-Nets: A framework for learning from unstructured data

    Full text link
    Data fields sampled on irregularly spaced points arise in many applications in the sciences and engineering. For regular grids, Convolutional Neural Networks (CNNs) have been successfully used to gaining benefits from weight sharing and invariances. We generalize CNNs by introducing methods for data on unstructured point clouds based on Generalized Moving Least Squares (GMLS). GMLS is a non-parametric technique for estimating linear bounded functionals from scattered data, and has recently been used in the literature for solving partial differential equations. By parameterizing the GMLS estimator, we obtain learning methods for operators with unstructured stencils. In GMLS-Nets the necessary calculations are local, readily parallelizable, and the estimator is supported by a rigorous approximation theory. We show how the framework may be used for unstructured physical data sets to perform functional regression to identify associated differential operators and to regress quantities of interest. The results suggest the architectures to be an attractive foundation for data-driven model development in scientific machine learning applications

    Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces

    Full text link
    We present a phenomenological model of melting in nanoparticles with facets that are only partially wet by their liquid phase. We show that in this model, as the solid nanoparticle seeks to avoid coexistence with the liquid, the microcanonical melting temperature can exceed the bulk melting point, and that the onset of coexistence is a first-order transition. We show that these results are consistent with molecular dynamics simulations of aluminum nanoparticles which remain solid above the bulk melting temperature.Comment: 8 pages, 5 figure

    Aging in the random energy model

    Get PDF
    In this letter we announce rigorous results on the phenomenon of aging in the Glauber dynamics of the random energy model and their relation to Bouchaud's 'REM-like' trap model. We show that, below the critical temperature, if we consider a time-scale that diverges with the system size in such a way that equilibrium is almost, but not quite reached on that scale, a suitably defined autocorrelation function has the same asymptotic behaviour than its analog in the trap model.Comment: 4pp, P

    Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation

    Full text link
    The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.Comment: 20 page

    Noncomputability Arising In Dynamical Triangulation Model Of Four-Dimensional Quantum Gravity

    Full text link
    Computations in Dynamical Triangulation Models of Four-Dimensional Quantum Gravity involve weighted averaging over sets of all distinct triangulations of compact four-dimensional manifolds. In order to be able to perform such computations one needs an algorithm which for any given NN and a given compact four-dimensional manifold MM constructs all possible triangulations of MM with ≤N\leq N simplices. Our first result is that such algorithm does not exist. Then we discuss recursion-theoretic limitations of any algorithm designed to perform approximate calculations of sums over all possible triangulations of a compact four-dimensional manifold.Comment: 8 Pages, LaTex, PUPT-132

    Vortex Dynamics in Dissipative Systems

    Full text link
    We derive the exact equation of motion for a vortex in two- and three- dimensional non-relativistic systems governed by the Ginzburg-Landau equation with complex coefficients. The velocity is given in terms of local gradients of the magnitude and phase of the complex field and is exact also for arbitrarily small inter-vortex distances. The results for vortices in a superfluid or a superconductor are recovered.Comment: revtex, 5 pages, 1 encapsulated postscript figure (included), uses aps.sty, epsf.te

    Effective Hamiltonian Constraint from Group Field Theory

    Full text link
    Spinfoam models provide a covariant formulation of the dynamics of loop quantum gravity. They are non-perturbatively defined in the group field theory (GFT) framework: the GFT partition function defines the sum of spinfoam transition amplitudes over all possible (discretized) geometries and topologies. The issue remains, however, of explicitly relating the specific form of the group field theory action and the canonical Hamiltonian constraint. Here, we suggest an avenue for addressing this issue. Our strategy is to expand group field theories around non-trivial classical solutions and to interpret the induced quadratic kinematical term as defining a Hamiltonian constraint on the group field and thus on spin network wave functions. We apply our procedure to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss the relevance of understanding the spectrum of this Hamiltonian operator for the renormalization of group field theories.Comment: 14 page

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio
    • …
    corecore